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Abstract

Background: Kyasanur Forest disease virus (KFDV) and Alkhurma hemorrhagic fever virus (AHFV) are closely related
members of the Flavivirus genus and are important causes of human disease in India and the Arabian Peninsula,
respectively. Despite high genetic similarity, the viruses have distinctly different host ranges and ecologies. Human cases of
KFDV or AHFV develop a spectrum of disease syndromes ranging from liver pathology to neurologic disease. Case reports
suggest KFDV is more commonly associated with hepatic and gastrointestinal manifestations whereas AHFV is more
commonly associated with neurologic disease.

Methodology/Principal Findings: Inoculation of three immunocompetent laboratory mouse strains revealed that KFDV was
consistently more lethal than AHFV. In subsequent studies utilizing C57BL/6J mice, we demonstrated that KFDV infection
was associated with higher viral loads and significantly higher mortality. KFDV-infected mice rapidly developed more severe
disease than AHFV-infected mice, as evidenced by significant abnormalities on clinical chemistry panels and more severe
pathology in the brain and gastrointestinal tract.

Conclusions/Significance: Infections of C57BL/6J mice with KFDV or AHFV resulted in clinical disease syndromes that
closely approximate the diseases seen in human cases. Despite high genetic similarity, there were clear differences in
survival, viral kinetics, clinical chemistry data and histology. These results suggest that distinct mouse models for AHFV and
KFDV are necessary in order to gain a better understanding of the unique pathogenesis of each virus, as well as to provide
platforms for testing promising vaccines and therapeutics.
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Introduction

Alkhurma hemorrhagic fever virus (AHFV) and Kyasanur

Forest disease virus (KFDV) are closely related members of the

genus Flavivirus [family Flaviviridae]. The genus is subdivided by

vector into three groups: mosquito-borne, tick-borne, and a group

including flaviviruses with no known vector. Several tick-borne

flaviviruses (AHFV, KFDV, Omsk hemorrhagic fever virus

(OHFV), Powassan virus, and tick-borne encephalitis virus), as

well as a number of mosquito-borne flaviviruses (West Nile virus,

Dengue virus, Yellow fever virus, Japanese encephalitis virus, etc.)

are important human pathogens.

The closely related AHFV and KFDV cause similar disease

syndromes in people, marked by sudden onset fever, myalgia and

arthralgia. In severe cases, sequelae can include encephalitis and/

or a hemorrhagic syndrome, with the latter defined by petechiae,

epistaxis, bleeding from gums, hematemesis, melena and hema-

tochezia [1–5]. Most commonly in AHFV cases, neurologic

clinical signs have been described, including tremors, seizures,

neck rigidity, confusion, convulsions or coma [1–5]. In contrast, a

review of fatal human cases of KFDV suggested that gastrointes-

tinal hemorrhage is the most common finding [4]. The overall case

fatality of KFDV infection is estimated to be 1–2% of the 400–500

cases reported annually, and a recent outbreak suggested AHFV

mortality is similar to KFDV (,2%) [2]. Previously, reports of

AHFV were associated with a higher case fatality ratio of 25% [5]

that indicated a failure to identify asymptomatic or mild cases

initially. More recently, the number of human AHFV infections

documented annually is generally less than 100 [6]. Beyond

supportive care, there is no specific treatment for either AHFV or

KFDV infection.

Despite their high genetic similarity (.92% by nucleotide) and

the similar clinical syndromes they cause in humans, AHFV and

KFDV diverged more than 700 years ago [7] and have since
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maintained distinct geographic ranges, primarily in Saudi Arabia

and India, respectively. However, the viruses were only first

identified during the second half of the 20th century. In 1957,

KFDV was recognized as the cause of human disease in the

Shimoga district of India and concurrent massive deaths of

nonhuman primates in the Kyasanur Forest. KFDV human cases

remain isolated to regions within Karnataka State. Almost 40

years later in 1994, AHFV was isolated from a fatally infected

butcher in Makkah, Saudi Arabia. Since then, AHFV cases have

been confirmed in Jeddah, Jizan, and Najran in Saudi Arabia and

most recently across the Red Sea, near the Egypt-Sudan border in

2010 [8].

Risk factors associated with KFDV infection include activities in

the Kyasanur Forest region, handling ill or dead primates,

exposure to ticks (primarily Haemaphysalis spp), or through

laboratory infections [1]. Human AHFV infections have also

been associated with tick bites, and AHFV has been isolated from

an Ornithodoros tick in Jeddah [9], and Ornithodoros savignyi and

Hyalomma dromedarii ticks in Najran [10]. However, another

common risk factor for AHFV infection appears to be close

contact with domestic animals, particularly sheep and camels [3],

although no disease has been reported in these animals.

A KFDV vaccine is available, however, the efficacy of this

vaccine is unclear [1], and hundreds of human KFDV cases

reported every year. Recently, an upsurge of cases in 2012 has

been attributed to a shortage of this vaccine and the subsequent

failure to provide booster vaccinations to individuals at high risk

[11]. The increasing number of KFDV cases, coupled with AHFV

range expansion into east Africa, highlights the need for efficacious

vaccines and development of antiviral drugs. Here we describe the

development of lethal disease models of KFDV and AHFV

infection for this purpose. Previously, KFDV infection was

described in several species, including laboratory rodents and

wild animals (reviewed in [12]). However, this work describes the

first model of AHFV infection in the mouse model, and therefore

provides the first opportunity to directly compare the relative

pathogenesis of these genomically similar, yet ecologically distinct

viruses.

Materials and Methods

Ethics statement
Animal procedures in this study complied with institutional

guidelines, the US Department of Agriculture Animal Welfare

Act, and the National Institutes of Health Guide for the Care and

Use of Laboratory Animals. All procedures were approved by the

Centers for Disease Control and Prevention (CDC) Institutional

Animal Care and Use Committee (IACUC).

Biosafety
All work with infectious KFDV and AHFV was completed in a

biosafety level (BSL)-4 laboratory at the Centers for Disease

Control and Prevention (CDC, Atlanta, GA, USA). All animals

were housed within the BSL-4 laboratories in microisolator pans

in HEPA filtration racks, following standard barrier techniques.

All laboratorians and animal handlers adhered to international

biosafety practices appropriate for BSL-4, strictly following

infection control practices to prevent cross-contamination between

individual animals.

Animals and husbandry
Female 6–8 week old C3H, A/J and C57BL/6J mice were

obtained from a commercial vendor (Jackson Laboratory). Mice

were housed in groups of 5, and supplied a commercially available

mouse chow and water ad libitum. After infection, each animal was

observed a minimum of once per day, and its health assessed and

scored by experienced CDC veterinarians or animal health

technicians. Animals were euthanized if found in acute distress

or moribund, or if they scored greater than 10 on a pre-

determined clinical illness scoring algorithm: (2 points) hunched

posture, ruffled coat or huddling; (3 points) ataxia, circling, paresis,

or tremors; (5 points) apparent anemia (pale mucous membranes),

or difficulty breathing.

Viruses
KFDV strain P9605 was originally isolated in 1957 from serum

of a human patient in Shigga, Karnataka. Wild-type KFDV (strain

P9605) and AHFV (strain 200300001) were grown from stocks in

the CDC Viral Special Pathogens Branch reference collection.

Viruses were propagated in VeroE6 cells with Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 5% fetal bovine

serum (FBS) and penicillin-streptomycin (Invitrogen). Titers of all

viral stocks were determined as tissue culture infective dose 50

(TCID50) on VeroE6 cells and visualized by indirect fluorescent-

antibody assay (IFA) using anti-KFDV hyperimmune mouse

ascitic fluid (HMAF) primary antibody.

Animal infections
In the first animal experiment, inbred mouse strains were

evaluated for use as pathogenesis models of KFDV and AHFV

infections. Three common immunocompetent laboratory mouse

strains (C3H, C57BL/6J, and A/J) were inoculated in groups of 10

with either 1.06105 TCID50 KFDV or 1.06105 AHFV TCID50

subcutaneously (sc) in a volume of 100 mL sterile DMEM. Mock-

infected controls were inoculated with 100 mL sterile DMEM.

Animals were evaluated twice daily for 28 days following infection.

In a follow-up experiment, a 50% lethal dose (LD50) study was

undertaken to determine the dose of virus required to cause

mortality in 50% of infected C57BL/6J mice. All mice were

implanted with an identification chip for noninvasive measure-

ment of body temperature. Mice in groups of 5 were infected sc

with AHFV or KFDV at the following doses: 100,000; 10,000;

1,000; 100; 10; or 1 TCID50.

A serial euthanasia study was next undertaken utilizing the

C57BL/6J mouse model to compare the kinetics of viral spread,

clinical parameters of disease progression, innate immune

response and virus-associated pathology of mice infected with

16105 TCID50 of AHFV or 16105 TCID50 KFDV. On 1, 4, 6,

and 7 days post-infection (dpi), 5 AHFV- and 5 KFDV-infected

mice were anesthetized with isofluorane, terminally bled and

perfused with PBS. Whole blood was taken for complete blood

counts (CBC) and a metabolic blood chemistry panel. Samples of

liver, spleen, kidney, gastrointestinal tract (GIT) and brain were

taken for quantitation of virus load and histology.

Hematological parameters
Whole blood was collected under general anesthesia by

intracardiac puncture into either EDTA-coated or heparin-coated

vacutainer tubes. CBCs were performed using the Hematrue

blood analyzer (HESKA). Blood chemistry profiles were obtained

from heparinized whole blood samples using the Piccolo point of

care chemistry analyzer (Abaxis).

Total RNA extraction
Liver, spleen, kidney, GIT, brain and blood specimens were

collected on days 1, 4, 6 and 7 post-infection, and from animals

reaching experimental end points. RNA was extracted using
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MagMax Total RNA Isolation kit (Ambion). Approximately

100 mg tissue samples were placed directly in lysis buffer and

homogenized using a high throughput tissue grinder (GenoGrin-

der2000). Homogenates were extracted using the MagMax

Express-96 Magnetic Particle Processor (Ambion) according to

manufacturer’s directions including a DNase treatment step.

Approximately 50 mL of whole blood was added directly to lysis

buffer with isopropanol and extracted using the MagMax Express-

24 Magnetic Particle Processor (Ambion) following manufacturer’s

protocol.

Quantitative reverse-transcription PCR (qRT-PCR) for viral
RNA quantification

AHFV and KFDV RNA were detected using primers and probe

targeting a conserved region of the NS3 protein (forward primer: 59-

ATGAGTGAGGAAAGGGCCAT-39; reverse primer: 59-CTCA-

TACTCTGTTATCCAGTC-39; probe: 59-6FAM-ACGGAGA-

GTGGAGAGAAGGCTT-39). For each viral genome detection

reaction, 2.5 mL of total RNA (approximately 0.5 mg RNA) was

added to a one-step qRT-PCR reaction (SuperScript III

Platinum One-Step qRT-PCR kit, Invitrogen) and run using

the ABI 7500 or Viia7 Real-Time PCR systems (Applied

Biosystems). RNA genome equivalents in infected blood and

tissue specimens were obtained using standard curves generated

by serial dilutions of the same known-titer stocks of AHFV and

KFDV used for infection. The results of all qRT-PCR runs

were normalized to endogenous mouse-specific controls (glycer-

aldehyde 3-phosphate dehydrogenase (GAPDH), Invitrogen)

following the manufacturer’s recommended protocols to account

for sample-to-sample variation.

Antiviral assays
Mouse antiviral Response quantitative PCR arrays (Qiagen

SAMM-122Z) were used to determine relative gene expression of

a select panel of 84 antiviral genes in mice infected with AHFV or

KFDV, relative to mock infected mice. Assays were run on brain

samples from 3 AHFV-infected mice, 3 KFDV-infected mice, and

3 mock-infected mice euthanized on 1 and 4 dpi. For each sample,

cDNA was synthesized from 0.8–1.0 mg of RNA using the RT2

first strand kit (SABioscience). Arrays were run on an ABI 7500

using RT2 SYBR Green/ROX PCR master mix according to

manufacturer’s instructions (SABioscience).

Histology
At the time of collection, liver, spleen, brain, intestine, and

kidney tissue specimens were fixed by immersion in 10% neutral

buffered formalin for 7 days and gamma-irradiated (2.06106

RAD) prior to processing. Tissues were paraffin-embedded

following routine methods, sectioned at approximately 4 micro-

meters, and stained with hematoxylin and eosin (H&E) for

histological examination.

Statistical analyses
All analyses were completed using the PRISM v5.0 program

(Graphpad). For each mouse strain, differences between AHFV

and KFDV survivor curves were evaluated using the Log-rank

(Mantel-Cox) test. Potentially significant differences between

AHFV and KFDV viral loads in tissues were evaluated using a

two-way ANOVA with Bonferroni post-tests for multiple com-

parisons. For the complete blood counts and clinical chemistry

data, significant differences between infected and sham-infected

animals at each time point were analyzed using a one-way analysis

of variance (ANOVA) with Dunnett’s adjustment for multiple

comparisons (*p,0.05; **p,0.01, ***p,0.001). For the antiviral

array analysis, the mean value for each gene was calculated from

replicate tissue samples using the threshold cycle (CT) method and

normalized to the average values for five housekeeping genes (Gus-

b, Hprt, HSP-90AB1, GAPDH, and b-actin genes). The P values

were calculated using Student’s t test (SABioscience) for each gene

in the AHFV and KFDV-infected groups.

Results

KFDV is more virulent than AHFV in 3 inbred mouse
strains

Three common laboratory mouse strains were infected via the

subcutaneous route with either 105 TCID50 KFDV or 105

TCID50 AHFV sc. KFDV-infected mice displayed signs of

progressive illness including hunched posture, ruffled fur and

lethargy starting 6 dpi with tremors developing in some mice prior

to death. Onset of similar clinical disease occurred later in AHFV-

infected mice, beginning on 9 dpi, with indications of neurologic

disease including hind-limb paralysis, ataxia and/or tremors. At

no point during the course of infection did KFDV- or AHFV-

infected mice become febrile; in both groups, body temperature

did not significantly differ from mock-infected mice. Mortality was

significantly higher in all mice infected with KFDV relative to

AHFV, regardless of strain: C57BL/6: 100% vs. 50% (p,0.0001),

C3H: 90% vs. 60% (p,0.05), A/J 100% vs. 10% (p,0.0001)

(Figure 1). In the subsequent LD50 assay in C57BL/6J mice, the

LD50 of KFDV (,1 TCID50) was significantly lower than that of

AHFV (.105 TCID50) (Table 1).

Peak viral RNA loads were found in the tissues of KFDV-
infected mice earlier than AHFV-infected C57BL/6J mice

KFDV-infected mice had higher viremia 1 day post-infection

(dpi), but blood from AHFV-infected mice had vRNA present

through 7 dpi (Figure 2A). The highest vRNA titers in the spleens

were found 1 dpi, suggesting the spleen is an early site for virus

amplification for both viruses (Figure 2B). Very low amounts of

vRNA were found in the liver and kidney of mice in both groups

throughout the course of infection (data not shown). KFDV-

infected mice had high vRNA loads in the gastrointestinal tract

(Figure 2C) and brain (Figure 2D) beginning 4 dpi. Two days

later, AHFV levels in the GIT were equivalent to those of KFDV-

infected mice. However, the brains of KFDV-infected mice had

significantly higher vRNA loads than AHFV-infected until 7 dpi.

Figure 1. KFDV is more virulent than AHFV in 3 immunocom-
petent mouse strains. C3H, A/J and C57BL/6J mice were inoculated
subcutaneously with either 16105 TCID50 AHFV or 16105 TCID50 KFDV
(n = 10/group) and monitored for 28 days. Regardless of strain, KFDV
infection resulted in higher mortality and more severe disease than
AHFV.
doi:10.1371/journal.pone.0100301.g001
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KFDV- and AHFV-infected mice developed transient
lymphopenia

CBC data indicated that both AHFV- and KFDV-infected mice

developed marked lymphopenia that was significant 1 dpi

(Figure 3B). By 6 dpi, mice in both groups had significant

monocytosis (Figure 3C) and neutrophilia (Figure 3D). There were

no other alterations in the CBC data, and no significant differences

between KFDV- and AHFV-infected mice.

KFDV-infected mice, but not AHFV-infected mice,
developed elevated liver enzymes, azotemia,
hypoalbuminemia and hypoglycemia late in infection

Chemistry data from KFDV-infected mice indicated significant

deviations from normal values. KFDV-infected mice had in-

creased blood-urea nitrogen (BUN) 7 dpi (Figure 4A) and normal

creatinine (Figure 4B), driving an increased BUN/creatinine ratio.

Liver enzymes were elevated in KFDV-infected mice: ALT on 1

and 7 dpi (Figure 4C), and AST from 4 dpi through the end of the

infection (Figure 4D). During the late stages of the disease,

Table 1. Survival data for C57BL/6 mice following infection with KFDV or AHFV sc.

Dose (TCID50) 1 10 100 1000 10000 100000

KFDV 2/5 0/5 0/5 0/5 0/5 0/5

AHFV 5/5 5/5 4/5 5/5 5/5 3/5

Values indicate the number of mice (out of 5) that survived infection with KFDV or AHFV as of 30 dpi.
doi:10.1371/journal.pone.0100301.t001

Figure 2. KFDV-infected mice have higher viral RNA loads than AHFV-infected mice early in infection. Viral RNA loads in the (A) blood,
(B) spleen, (C) gastrointestinal tract and (D) brain were compared between KFDV- and AHFV-infected mice on 1, 4, 6 and 7 dpi. Asterisks indicate
significant differences between KFDV- and AHFV-infected mice (n = 5; p,0.05). The gray dotted line denotes limit of detection of the assay.
doi:10.1371/journal.pone.0100301.g002
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hypoalbuminemia (Figure 4E) and hypoglycemia (Figure 4F) were

apparent in KFDV mice. In contrast, all chemistry values from

AHFV-infected mice were indistinguishable from mock-infected

mice.

Antiviral gene expression was elevated in brains of AHFV-
and KFDV-infected mice

In order to address the possibility that the higher viral loads and

more rapid virus dissemination in KFDV-infected mice relative to

AHFV-infected mice were due to reduced antiviral immune

responses, we compared antiviral gene expression between groups.

We focused on the immune response in the CNS because it is a

major target of viral infection, and KFDV-infected mice had viral

RNA present in the CNS earlier and at higher levels than AHFV-

infected mice. We therefore compared the interferon-stimulated

responses in the brains of mice 1 and 4 dpi, before virus-mediated

pathology was apparent in the brain. Relative to mock-infected

mice, both groups of infected mice demonstrated significant

upregulation of interferon stimulated genes (ISGs) including IRF7,

ISG15, Mx1, OAS and STAT1 on 1 and 4 dpi (Figure 5A).

AHFV- and KFDV-infected mice also had significant upregula-

tion of dsRNA sensors, including the cytosolic helicases RIG-I,

MDA5 and LGP2, as well as TLR3 (Figure 5B). There were no

significant differences in antiviral gene expression between AHFV-

and KFDV-infected mice.

Histopathologic lesions occurred earlier and were more
severe in KFDV-infected mice than in AHFV-infected mice

The earliest histopathologic lesions consisted of multifocal

splenic fibrin thrombi at 1 dpi in three of five KFDV-infected

mice. No other splenic lesions were identified in any virus- or

mock-infected mice on any day. Early brain lesions consisted of

very mild perivascular cuffing in one of five KFDV-infected mice

at 4 dpi. By 6 and 7 dpi, all KFDV-infected mice exhibited

moderate to severe meningoencephalitis with lymphocytic and

histiocytic perivascular cuffing, acute neuronal necrosis, micro-

Figure 3. KFDV and AHFV-infected mice developed significant lymphopenia relative to control mice. Complete blood counts were run
on KFDV-, AHFV- and mock-infected mice on 1, 4, 6, and 7 dpi. (A) Leukocyte, (B) lymphocyte, (C) monocyte and (D) granulocyte counts are displayed.
Asterisks indicate significant differences between KFDV-infected mice (blue) or AHFV-infected mice (green) relative to mock-infected animals (p,
0.05). On each day, data was collected from a minimum of 3 and a maximum of 5 mice per group.
doi:10.1371/journal.pone.0100301.g003
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gliosis, and glial nodules (Figure 6A and 6B). Areas of gliosis and

perivascular cuffs sometimes also contained neutrophilic infiltrate

and karyorrhectic cell debris. Lesions were most consistently

present in the cerebral cortex, thalamus, midbrain, and brainstem,

but the olfactory bulb, hippocampus, and cerebellum were also

variably involved. Brain lesions in AHFV-infected mice were

milder, affected fewer individuals, and were delayed in onset

compared to KFDV-infected mice. Mild meningitis and perivas-

cular cuffing first appeared at 6 dpi in only one of five AHFV mice

(Figure 6C). At 7 dpi, one of five AHFV-infected mice had

meningoencephalitis of similar character and severity to lesions in

6–7 dpi KFDV-infected mice, while two mice exhibited only mild

perivascular cuffing and two remained unaffected.

Small intestine was available for histologic examination in both

infected groups from 6 and 7 dpi, and from mock-inoculated mice.

Small intestinal lesions were most significant in KFDV-infected

mice, and consisted of histiocytic, lymphocytic, and variably

neutrophilic infiltrate in the submucosa and muscularis. This

inflammation often involved, obscured, and disrupted submucosal

and myenteric nerve plexi (Figure 6E; normal plexi for compar-

ison, mock-infected mice, Figure 6D). KFDV-infected mice also

had evidence of an acute, necrotizing process characterized by

intestinal crypt dilation and necrosis, and accumulation of

abundant cell debris in the intestinal lumen (Figure 6F). Enteritis

in AHFV-infected mice was less severe than that in KFDV mice,

and consisted only of mixed inflammation in the submucosa and

muscularis. Lesions were minimal at 6 dpi and mild at 7 dpi,

affecting 3 and 5 mice, respectively. As in KFDV mice,

inflammation sometimes centered on submucosal and myenteric

plexi. In the liver of KDFV-infected mice, there was mild

microvesicular hepatocellular vacuolation (lipidosis, consistent

with inanition) on days 6 and 7. No significant lesions were

identified in kidneys from any group, or in any tissues from mock-

infected mice.

Discussion

Tickborne flaviviruses, including OHFV, TBEV, AHFV and

KFDV, are important human pathogens in certain regions of the

world. AHFV was identified almost 40 years after the initial

description of KFDV, and the remarkable genetic similarity led to

the initial classification of AHFV as a subtype of KFDV. However,

their different geographic ranges, ecologies, and recent phyloge-

netic analyses suggest that these viruses diverged hundreds of years

ago [2,7]. AHFV, found originally in Saudi Arabia, has since been

found repeatedly in Egypt in close association with camel markets

[5,13]. In contrast, all the known KFDV cases occur with a small

region surrounding the Kyasanur Forest in southwest India. Given

these apparent differences in ecology, public health impact and

host range we evaluated the viruses for differences in clinical

disease and mortality, viral kinetics, clinical parameters and

pathology in mice.

In an initial study, three commonly used laboratory mouse

strains were tested for susceptibility to KFDV and AHFV.

C57BL/6, C3H and A/J mice are all commonly used and

immunocompetent mouse strains; they differ immunologically in

Figure 4. KFDV infection and not AHFV infection resulted in significant biochemical changes, particularly at late time-points post-
infection. KFDV infection was associated with (A) elevated BUN, (B) slightly increased creatinine, (C) elevated ALT, (D) elevated AST, (E)
hypoalbuminemia and (F) hypoglycemia. Asterisks indicate significant differences between KFDV-infected mice (blue) relative to mock-infected
animals (p,0.05). No alterations in clinical chemistry values were significant in AHFV-infected mice (green). On each day, data was collected from a
minimum of 3 and a maximum of 5 mice per group.
doi:10.1371/journal.pone.0100301.g004
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their MHC H2 haplotypes. In all three strains, KFDV infections

resulted in a more rapid and severe disease than seen with AHFV-

infected mice. Of the mice infected with KFDV, 90–100%

succumbed to infection, as compared 10–50% mortality seen

following AHFV infection. It is important to note that mice

infected with KFDV or AHFV received the same dose of virus,

despite the differences in LD50 between groups, in order to

directly compare gross differences in pathogenesis between the two

viruses. Future studies to compare more subtle differences in

pathogenesis might provide valuable information by utilizing virus

doses with equivalent LD50s.

KFDV and AHFV have much lower case fatality rates in

humans, however, clinical disease in the mouse models, and

particularly the C57BL/6 mice, were strikingly similar to case

reports of severe human disease. KFDV-infected mice consistently

demonstrated gross anatomical signs of gastrointestinal hemor-

rhage, which correlates with the primary autopsy findings in a

broad evaluation of 100 human KFDV cases [4,6]. AHFV-

infected mice had clinical indications of neurologic disease,

including partial paralysis and tremors, as has been described in

AHFV human infections [2,3,7]. KFDV and AHFV disease in the

mouse model differed from published descriptions of human

disease; mice did not become febrile or develop overt symptoms of

biphasic or delayed-onset disease.

Both AHFV and KFDV patients have consistently been

described as having CBC abnormalities including lymphopenia

[1,2,4,8,14–16], as was seen in KFDV- and AHFV-infected mice.

Transient lymphopenia is a common finding following viral

infection and has been shown to be associated with an early Type I

interferon response [17]. Reports of both KFDV and AHFV

human cases have described significant hypoalbuminemia, elevat-

ed blood urea nitrogen (BUN) and liver transaminases [4,5,9,18].

In the mouse model, KFDV-infected mice, but not AHFV-

infected mice had values significantly greater than mock-infected

Figure 5. KFDV- and AHFV-infected mice mount an early innate
response to infection in the CNS. In the brains of mice infected with
KFDV or AHFV, there was significant upregulation of (A) interferon-
stimulated genes and (B) pathogen recognition receptors (PRRs). There
were not significant differences in gene expression between mice
infected with AHFV and those infected with KFDV (n = 5; p.0.05).
doi:10.1371/journal.pone.0100301.g005

Figure 6. More severe histopathologic lesions were apparent in
the brains and gastrointestinal tracts of KFDV-infected mice
than AHFV-infected mice. (A) Brain, hippocampus, KFDV-infected
mouse, 6 dpi; acute necrosis and loss of hippocampal neurons
(segment delineated by arrowheads), with adjacent, relatively unaffect-
ed neurons (arrow). (B) Brainstem, KFDV-infected mouse, 6 dpi; severe
meningoencephalitis with perivascular cuffing (arrow) and widespread
gliosis in the adjacent neuropil (asterisk). (C) Brainstem, AHFV-infected
mouse, 7 dpi; mild meningoencephalitis characterized by perivascular
cuffing (arrows). (D) Small intestine, mock-inoculated mouse; normal
tissue section demonstrating anatomic location of submucosal (arrow)
and myenteric (arrowhead) nerve plexi and normal intestinal villi; inset
shows higher magnification of neuron cell bodies in plexus. (E) Small
intestine, KFDV-infected mouse, 7 dpi; moderate, predominantly
histiocytic, inflammatory infiltrate in submucosa and muscularis,
involving and disrupting myenteric plexi (arrowheads). Inset shows
higher magnification of infiltrate and cell debris in plexus. (F) Small
intestine, KFDV-infected mouse, 7 dpi; intestinal crypts are dilated and
filled with necrotic cells (asterisks), intestinal lumen contains abundant
cellular debris (top of image), and villi are blunted and fused. All H&E
images, original magnification 200x.
doi:10.1371/journal.pone.0100301.g006
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mice, which may explain the more rapid and severe course of

disease in KFDV infection.

KFDV-infected mice succumbed to infection within 7–9 days.

Hypoglycemia and presumptive lipidosis in these mice suggest

anorexia as a prelude to the development of clinical disease. In

contrast, approximately one-half of AHFV-infected mice devel-

oped fatal disease between 9 and 15 dpi characterized by signs of

neurologic involvement, while the remaining half survived with no

indication of clinical signs. In both groups, rapid viral dissemina-

tion to the spleen occurs within 24 hours after infection, although

viral loads in AHFV-infected mice were one log lower than

KFDV-infected mice. High levels of virus replication and

associated evidence of progressive mild to moderate meningoen-

cephalitis was evident as early as 4–6 dpi in KFDV-infected mice

but lagged by 2–3 days in AHFV-infected mice. Viral replication

was apparent in the small intestine of KFDV-infected mice at the

same time, and by 6 dpi, there was histologic evidence of an acute

necrotizing process. Significant elevation in BUN of KFDV-

infected mice and an elevated BUN/creatinine ratio, coupled with

the hypoalbuminemia, are consistent with GI hemorrhage. AHFV

loads were significantly lower in the GIT through 6 dpi, with

minimal enteritis evident and there were no abnormalities in the

clinical chemistry data indicative of GI hemorrhage. In both

KFDV- and AHFV-infected mice, intestinal lesions included

inflammation of enteric nerve plexi, associated with neuronal

degeneration and depletion. This finding has also been reported in

mouse models of West Nile virus [10,19].

Both viruses stimulated increased antiviral gene expression

relative to mock-infected control mice and there were no

significant differences between AHFV and KFDV in any of the

86 antiviral genes evaluated. These results suggested that the

viruses stimulate similar responses in the CNS by triggering a type

I interferon response as evidenced by upregulation of interferon-

stimulated genes Mx1, OAS, ISG15, IRF7 and STAT1. Increased

expression of RIG-I and MDA5 suggested that AHFV and KFDV

could be recognized by one or both of the cytosolic helicases, as

has been demonstrated for JEV, WNV, DENV and possibly YFV

(reviewed in [3,20]). Similarly, upregulation of TLR3 suggests that

dsRNA replication intermediates might be recognized in the

endosome as has been postulated for WNV and DENV [20].

In summary, KFDV infected mice displayed higher morbidity

and mortality than AHFV-infected mice in the C57BL/6J mouse

model. KFDV-infected mice uniformly succumbed to disease 7–9

days post-infection, following a rapid disease progression charac-

terized by high viral loads, significant clinical chemistry abnor-

malities and marked pathology in the gastrointestinal tract and

brain. In contrast, approximately 50% of AHFV-infected died

between 10 and 15 days post-infection, with evidence of delayed

virus replication relative to KFDV-infected mice. The course of

KFDV infection closely resembles the disease seen following

infection with the prototypic tick-borne hemorrhagic flavivirus,

OHFV, whereas AHFV-infected mice displayed less severe clinical

disease more similar to the encephalitic flaviviruses [21,22]. AHFV

and KFDV, along with OHFV, are categorized as BSL-4 viruses

and are on the Select Agent list of potential biothreat agents and

are considered to be the only tick-borne flaviviruses that cause

hemorrhagic manifestations in people. These features emphasize

the importance of a reliable animal model for these severe

pathogens. In the models described here, KFDV and AHFV

infected mice develop disease similar to that seen in humans,

providing an excellent platform for testing promising vaccines,

antivirals and therapeutics.
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